Exercise 26

Prove the statement using the precise definition of a limit.

$$\lim_{x \to 0} \sqrt[3]{x} = 0$$

Solution

Proving this limit is logically equivalent to proving that

if
$$|x-0| < \delta$$
 then $|\sqrt[3]{x}-0| < \varepsilon$

for all positive ε . Start by working backwards, looking for a number δ that's greater than |x|.

$$\begin{aligned} |\sqrt[3]{x} - 0| < \varepsilon \\ |\sqrt[3]{x}| < \varepsilon \\ \sqrt[3]{|x|} < \varepsilon \\ \left(\sqrt[3]{|x|}\right)^3 < (\varepsilon)^3 \\ |x| < \varepsilon^3 \end{aligned}$$

Choose $\delta = \varepsilon^3$. Now, assuming that $|x| < \delta$,

$$|\sqrt[3]{x} - 0| = |\sqrt[3]{x}|$$
$$= \sqrt[3]{|x|}$$
$$< \sqrt[3]{\delta}$$
$$= \sqrt[3]{\varepsilon^3}$$
$$= \varepsilon.$$

Therefore, by the precise definition of a limit,

$$\lim_{x \to 0} \sqrt[3]{x} = 0.$$