Exercise 26

Prove the statement using the precise definition of a limit.

$$
\lim _{x \rightarrow 0} \sqrt[3]{x}=0
$$

Solution

Proving this limit is logically equivalent to proving that

$$
\text { if } \quad|x-0|<\delta \quad \text { then } \quad|\sqrt[3]{x}-0|<\varepsilon
$$

for all positive ε. Start by working backwards, looking for a number δ that's greater than $|x|$.

$$
\begin{gathered}
|\sqrt[3]{x}-0|<\varepsilon \\
|\sqrt[3]{x}|<\varepsilon \\
\sqrt[3]{|x|}<\varepsilon \\
(\sqrt[3]{|x|})^{3}<(\varepsilon)^{3} \\
|x|<\varepsilon^{3}
\end{gathered}
$$

Choose $\delta=\varepsilon^{3}$. Now, assuming that $|x|<\delta$,

$$
\begin{aligned}
&|\sqrt[3]{x}-0|=|\sqrt[3]{x}| \\
&= \sqrt[3]{|x|} \\
&<\sqrt[3]{\delta} \\
&=\sqrt[3]{\varepsilon^{3}} \\
&=\varepsilon
\end{aligned}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow 0} \sqrt[3]{x}=0
$$

